interdim.cluster
Functions
|
Perform clustering on the input data. |
Classes
|
Perform Affinity Propagation Clustering of data. |
|
Agglomerative Clustering. |
|
Implements the BIRCH clustering algorithm. |
|
Perform DBSCAN clustering from vector array or distance matrix. |
|
Gaussian Mixture. |
|
K-Means clustering. |
|
Mean shift clustering using a flat kernel. |
|
Mini-Batch K-Means clustering. |
|
Estimate clustering structure from vector array. |
|
Apply clustering to a projection of the normalized Laplacian. |
- interdim.cluster.cluster_data(data: ndarray, method: Literal['kmeans', 'dbscan', 'hdbscan', 'agglomerative', 'birch', 'mini_batch_kmeans', 'spectral', 'affinity_propagation', 'mean_shift', 'optics', 'gaussian_mixture'] = 'dbscan', n_clusters: int | None = None, **kwargs) ndarray [source]
Perform clustering on the input data.
- Parameters:
data – Input data to cluster.
method – Clustering method to use.
n_clusters – Number of clusters (for methods that require it).
**kwargs – Additional arguments to pass to the clustering method.
- Returns:
Cluster labels for each data point.
- Raises:
ValueError – If n_clusters is not provided for methods that require it.
ImportError – If HDBSCAN is not installed when ‘hdbscan’ method is selected.