interdim.reduce

Functions

reduce_dimensionality(data[, method, ...])

Perform dimensionality reduction on the input data.

Classes

FastICA([n_components, algorithm, whiten, ...])

FastICA: a fast algorithm for Independent Component Analysis.

GaussianRandomProjection([n_components, ...])

Reduce dimensionality through Gaussian random projection.

Isomap(*[, n_neighbors, radius, ...])

Isomap Embedding.

LocallyLinearEmbedding(*[, n_neighbors, ...])

Locally Linear Embedding.

MDS([n_components, metric, n_init, ...])

Multidimensional scaling.

NMF([n_components, init, solver, beta_loss, ...])

Non-Negative Matrix Factorization (NMF).

PCA([n_components, copy, whiten, ...])

Principal component analysis (PCA).

SparseRandomProjection([n_components, ...])

Reduce dimensionality through sparse random projection.

SpectralEmbedding([n_components, affinity, ...])

Spectral embedding for non-linear dimensionality reduction.

TSNE([n_components, perplexity, ...])

T-distributed Stochastic Neighbor Embedding.

TruncatedSVD([n_components, algorithm, ...])

Dimensionality reduction using truncated SVD (aka LSA).

interdim.reduce.reduce_dimensionality(data: ndarray, method: Literal['pca', 'tsne', 'umap', 'truncated_svd', 'fast_ica', 'nmf', 'isomap', 'lle', 'mds', 'spectral_embedding', 'gaussian_random_projection', 'sparse_random_projection'] = 'tsne', n_components: int = 2, **kwargs) ndarray[source]

Perform dimensionality reduction on the input data.

Parameters:
  • data – Input data to reduce.

  • method – Reduction method to use.

  • n_components – Number of dimensions to reduce to.

  • **kwargs – Additional arguments to pass to the reduction method.

Returns:

Reduced data.

Raises:
  • ValueError – If an unsupported reduction method is specified.

  • ImportError – If UMAP is not installed when ‘umap’ method is selected.