interdim.reduce
Functions
|
Perform dimensionality reduction on the input data. |
Classes
|
FastICA: a fast algorithm for Independent Component Analysis. |
|
Reduce dimensionality through Gaussian random projection. |
|
Isomap Embedding. |
|
Locally Linear Embedding. |
|
Multidimensional scaling. |
|
Non-Negative Matrix Factorization (NMF). |
|
Principal component analysis (PCA). |
|
Reduce dimensionality through sparse random projection. |
|
Spectral embedding for non-linear dimensionality reduction. |
|
T-distributed Stochastic Neighbor Embedding. |
|
Dimensionality reduction using truncated SVD (aka LSA). |
- interdim.reduce.reduce_dimensionality(data: ndarray, method: Literal['pca', 'tsne', 'umap', 'truncated_svd', 'fast_ica', 'nmf', 'isomap', 'lle', 'mds', 'spectral_embedding', 'gaussian_random_projection', 'sparse_random_projection'] = 'tsne', n_components: int = 2, **kwargs) ndarray [source]
Perform dimensionality reduction on the input data.
- Parameters:
data – Input data to reduce.
method – Reduction method to use.
n_components – Number of dimensions to reduce to.
**kwargs – Additional arguments to pass to the reduction method.
- Returns:
Reduced data.
- Raises:
ValueError – If an unsupported reduction method is specified.
ImportError – If UMAP is not installed when ‘umap’ method is selected.